Error Estimates of a First-order Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations

نویسندگان

  • Jean-Luc Guermond
  • Bojan Popov
چکیده

ERROR ESTIMATES OF A FIRST-ORDER LAGRANGE FINITE ELEMENT TECHNIQUE FOR NONLINEAR SCALAR CONSERVATION EQUATIONS∗ JEAN-LUC GUERMOND† AND BOJAN POPOV† Abstract. This paper establishes a O(h 1 4 ) error estimate in the L∞t (Lx)-norm for the approximation of scalar conservation equations using an explicit continuous finite element technique. A general a priori error estimate based on entropy inequalities is also given in the appendix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations

This paper proposes an explicit, (at least) second-order, maximum principle satisfying, Lagrange finite element method for solving nonlinear scalar conservation equations. The technique is based on a new viscous bilinear form introduced in Guermond and Nazarov [Comput. Methods Appl. Mech. Engrg., 272 (2014), pp. 198–213], a high-order entropy viscosity method, and the Boris–Book–Zalesak flux co...

متن کامل

A new positive definite semi-discrete mixed finite element solution for parabolic equations

In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations.  Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...

متن کامل

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Adaptive Finite Element Methods for Optimal Control Problems

In this thesis we study the numerical solution of optimal control problems. The problems considered consist of a system of differential equations, the state equations, which are governed by a control variable. The goal is to determine the states and controls which minimize a given cost functional. The numerical method in this work is based on an indirect approach, which means that necessary con...

متن کامل

A Posteriori Error Estimates for Nonlinear Problems. L(0, T ;L(Ω))-Error Estimates for Finite Element Discretizations of Parabolic Equations

Using the abstract framework of [10] we analyze a residual a posteriori error estimator for space-time finite element discretizations of parabolic pdes. The estimator gives global upper and local lower bounds on the error of the numerical solution. The finite element discretizations in particular cover the so-called θ-scheme, which includes the implicit and explicit Euler methods and the Crank-...

متن کامل

A Posteriori Error Estimates for Nonlinear Problems. Finite Element Discretizations of Parabolic Equations

We give a general framework for deriving a posteriori error estimates for approximate solutions of nonlinear parabolic problems. In a first step it is proven that the error of the approximate solution can be bounded from above and from below by an appropriate norm of its residual. In a second step this norm of the residual is bounded from above and from below by a similar norm of a suitable fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016